Comparision of Steering Geometry Parameters of Front Suspension of Automobile

P. N. Belkhode, A. M. Mahalle, P. P. Holay

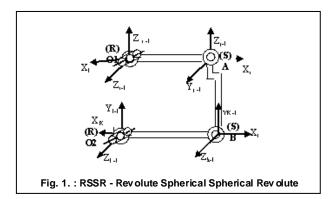
Abstract – Paper details the comparison of steering geometry parameters such as kingpin inclination angle, caster angle, camber angle, toe angle calculated from experimental observations, experimental data based model and artificial neural network theory. New techniques present the prediction of vehicle performance from the point of view of steering performance and comparison of steering performance of other vehicles.

Index Terms—Artificial Neural Network, Automobile, Comparison, Experimental, Suspension, Steering, Vehicle.

1 INTRODUCTION

THE Vehicle presents major challenges in terms of servicing and maintenance. Wom suspension bushings causes inconsistency in steering parameters. Steering geometry is very sensitive to even slightest distortions in bushes of suspension joints.

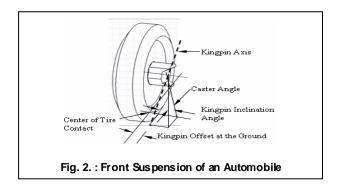
Steering performance parameters kingpin angle, caster angle, camber angle, toe angle, scrub radius, toe in and toe out of front suspension of vehicle are determined based on experimental observations, data based model and artificial neural network is compared. New techniques present the prediction of vehicle performance from the point of view of steering performance and comparison of steering performance of other vehicles.


Presently paper details the comparison of steering geometry parameters such as kingpin inclination angle, caster angle, camber angle, toe angle calculated from experimental observations, experimental data based model and artificial neural network theory.

2 FRONT SUSPENSION

2.1 Steering Geometry

The six included angles of the 3D front suspension mechanism, one at each revolute joints and two at each spherical joints of this four bar chain, position of kingpin axis is determined. Steering performance depends on the position of kingpin axis. Depending on the position of Kingpin axis, Caster angle, Camber angle, Kingpin angle and toe angle of four wheel vehicle are decided.


Joint O_1 and O_2 are revolute joints and joints A and B are Spherical joints as shown in Figure 1. The relative orientation of two links connected at joint can be decided in terms of magnitudes of included angles which in turn can be measured by potentiometer and associated electronic instrumentation. Six potentiometers are located at four joints (two spherical and two revolute) of the RSSR mechanism. At revolute joints O_1 & O_2 the one included angle each of these joints and at spherical joints A & B the two included angles at each of these joints.

2.2 Steering Parameters

• Kingpin axis: The steer angle is achieved by rotation of the wheel about a steer rotation axis. This axis is kingpin axis is shown in figure.

- Kingpin inclination angle: Angle in front elevation between the steering axis and the vertical.
- Caster angle: angle in side elevation between the steering axis and the vertical.
- Camber angle: Inclination of the wheel plane to the vertical

3. Formulation of an Experimental Data Based Model

3.1 Identification of Physical Quantities affecting Front Suspension Geometry

The variables affecting the vehicle performance in the context of phenomena of steering are given below.

TABLE 1 INDEPENDENT AND DEPENDENT VARIBLES

Inde	ependent Variables	Dependent Variables						
1.	Length of Upper control arm	1.	Kingpin angle					
2.	Length of Lower control arm	2.	Camber angle					
3.	Length of Knuckle arm	3.	Caster angle					
4.	Length of Fixed link	4.	Toe angle					
5.	Diameter of wheel	5.	Toe in					
6.	Mass of wheel	6.	Toe out					
7.	Braker Height	7.	Scrub radius					
8.	Braker Width							
9.	Wheel linear velocity							
10.	Operational time							
11.	Acceleration due to gravity							
12.	Clearance at spherical joint A							
13.	Clearance at spherical joint B							
14.	Clearance at revolute joint O1							
15.	Clearance at revolute joint O2							
16.	Lateral displacement							
17.	Spindle length							

TABLE 2 PROCESS VARIBLES

Description	Symbol	Dimension
Upper control arm	Ua	$[M^{\circ}LT^{\circ}]$
Low er control arm	La	[M ^v L T ^v]
Knuckle arm	Ka	[MºLTº]
Fixed link	Fi	[MºLTº]
Diameter of wheel	Dw	$[M^{\circ}LT^{\circ}]$
Weight of wheel	Wt	[MLT ⁻²]
Braker Height	Bh	[M ⁰ LT ⁰]
Braker Width	Bw	[M ⁰ LT ⁰]
Wheel velocity	Vt	[M ⁰ LT ¹]
Operational time	t	[M ⁰ L ⁰ T]
Acceleration due to gravity	g	$[M^{\circ}LT^{2}]$
Clearance at spherical joint A	Ca	[M ⁰ LT ⁰]
Clearance at spherical joint B	Cb	[M ⁰ LT ⁰]
Clearance at revolute joint O1	Co1	[M ⁰ LT ⁰]
Clearance at revolute joint O2	Co2	[Mº LTº]
Lateral displacement	Ld	[M [°] LT [°]]
Spindle length	SI	[M [°] LT [°]]
Kingpin angle	Kga	[M [°] L [°] T [°]]
Camber angle	Cm	[M [°] L [°] T [°]]
Caster angle	Cs	$[M^0 L^0 T^0]$
Toe angle	Та	$[M^0 L^0 T^0]$
Toe in	Ti	$[M^0 LT^0]$
Toe out	То	$[M^0 LT^0]$
Scrub radius	Sr	$[M^{0}LT^{0}]$

M, L and T are the symbols for mass, length and time respectively using the dimensionless . Caster angle Cs = f (Ua, La, Ka, Fi, Dw, Wt, Bh, Bw, Vt, t, g, Co1, Co2, Ca, Cb, Ld, Sl) ------(1)

General form can be defined as ϕ (Ua, La, Ka, Fi, Dw, Wt, Bh, Bw, Vt, t, g, Co1, Co2, Ca, Cb, Ld, Sl, Kgp, Cs, Cm, Ta, Ti, To, Sr) = 0 21 dimensionless terms $\phi(\pi 1, \pi 2, \pi 3, \pi 4, \pi 5, \pi 6, \pi 7, \pi 8, \pi 9, \pi 10, \pi 11, \pi 12, \pi 13, \pi 14, \pi 15, \pi 16, \pi 17, \pi 18, \pi 19, \pi 20, \pi 21) = 0$ Choosing Ua, Vt and Wt as repeating variables $\pi 1 = \text{La} / \text{Ua}$ Similarly for other π terms are evaluate and dimensionless equations are formed Caster angle: Cs = f (La x Ka x Fi / Ua3, Dw / Ua, Bh x Bw / Ua 2, Vt x t / Ua, Ua x g / Vt2, Co1 x C02 x Ca x Cb / Ua 4, Ld x Sl / Ua 2)

3.2 Deduction of Generalized Experimental Data Based Models:

Classical experimentation was planned and carried out on the front suspension of an automobile for predicating steering behavior, to establish empirical relationships among the dependent π terms and independent π terms. The dependent and independent variables are defined in the Table 1. The dependent dimensionless ratios and Independent dimensionless ratios are as shown below.

TABLE 3 DIMENSIONLESS PITERMS

Dimensionless ratios	Nature of basic Physical Quanti- ties
π_1 =La x Ka x Fi / Ua ³	Front suspension Link Lengths
π₂=Dw / Ua	Wheel Diameter
π_3 =Bh x Bw / Ua ²	Braker width and height
π ₄ =Vtxt/Ua	Time of operation
π_5 = Ua x g / Vt ²	Vehicle Speed
π_6 =Co1 x C02 x Ca x Cb / Ua 4	Clearances at joints
π_7 =Ld x sl / Ua ²	Displacement
$\pi_{D2} = Cs$	Caster angle

3.3 Formulation of Experimental Data Based Model

Each dependent π term is the function of the available independent π terms,

 $Cs = f(\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, \pi_7)$

Where,

 $Cs = \pi_{D1}$, dependent pi term

Model of dependent pi term π_{D1}

Caster angle, Cs = $k_3 x (\pi_1)^{a_3} x (\pi_2)^{b_3} x (\pi_3)^{c_3} x (\pi_4)^{d_3} x (\pi_5)^{e_3} x (\pi_6)^{f_3} x (\pi_7)^{g_3}$

The values of exponents a₁, b₁, c₁, d₁, e₁, f₁, g₁ are established independently at a time, on the basic of data collected through classical experimentation. From these models values of all dependent pi terms are computed.

$$\begin{split} Cs &= k_1 x (\pi_1)^{a_1} x (\pi_2)^{b_1} x (\pi_3)^{c_1} x (\pi_4)^{d_1} x (\pi_5)^{e_1} x (\pi_6)^{f_1} x (\pi_7)^{g_1} (1) \\ Z &= a + bX + cY + dZ + \dots \end{split}$$

The equation 1 can be brought in the form of equation 2 by taking log on both sides.

3.4 Model Formulation:

Model of dependent pi term π_{D1} for kingpin angle $Cs = k_1 x (\pi_1)^{a_1} x (\pi_2)^{b_1} x (\pi_3)^{c_1} x (\pi_4)^{d_1} x (\pi_5)^{e_1} x (\pi_6)^{f_1} x (\pi_7)^{g_1}$ $\pi_{D1} = k_1 x (\pi_1)^{a_1} x (\pi_2)^{b_1} x (\pi_3)^{c_1} x (\pi_4)^{d_1} x (\pi_5)^{e_1} x (\pi_6)^{f_1} x (\pi_7)^{g_1}$ Taking log on the both sides of equation for π_{D1} , getting eight unknown terms in the equations,

 $Log \pi_{D1} = log k1 + a_1 log \pi_1 + b_1 log \pi_2 + c_1 log \pi_3 + d_1 log \pi_4 + e_1 log \pi_5 + f_1 log \pi_6 + g_1 log \pi_7 -----(3)$

Let,

 $\begin{array}{ll} Z_1 = \log \pi_{D1}, & K_1 = \log k1, & A = \log \pi_1, & B = \log \pi_2 \\ C = \log \pi_3, & D = \log \pi_4, & E = \log \pi_5, & F = \log \pi_6 \end{array}$

G = log π_7

Putting the values in equations 3, the same can be written as $Z_1 = K_1 + a_1 A + b_1 B + c_1 C + d_1 D + e_1 E + f_1 F + g_1 G$ (4)

X₁ matrix with K₁ and indices a₁, b₁, c₁, d₁, e₁, f₁, g₁ follows Cs = 1.020939 x 10 ⁹ $(\pi_1)^{104.05}$ $(\pi_2)^{61.813}(\pi_3)^{0.0384}(\pi_4)^{65.836}(\pi_5)$ ^{-0.236} (π_6) ^{7.302} $(\pi_7)^{0.88782}$

Thus corresponding to the dependent pi terms, models are formulated from the set of observed data for the response of caster angle. From these models values of the dependent pi terms are computed. The observed and computed values of the dependent pi terms are compared by calculating their mean values. In order to check the accuracy of the predicted / computed values of the dependent pi terms, error is worked out.

4 Analysis of Performance of the Model

The models have been formulated mathematically. An approximate generalized experimental data based models are evolved for predicating the Steering Behavior.

This includes application of Dimensional Analysis is quite simple way in which a given test can be made compact in operating plan. In this experimentation we may not be able to recognize all the variables that influence a test, but we should realize that they and their dimensional equation have reality whether or not it is apparent.

The indices of the model are the indicators of how the phenomenon is getting affected because of the interaction of various independent pi terms in the models. The influence of indices of the various independent pi terms on each dependent pi term is discussed below.

5. Comparison of computed values of experimental observation, experimental data based model and ANN simulation.

The comparison of the steering performance parameters by above three approaches is given below in Table 5

 TABLE 5

 VALUES OF DEPENDENT PI TERMS COMPUTED BY EXPERIMENTAL

 OBSERVATIONS, EXPERIMENTAL DATA BASED MODELS AND ANN SI-MULATION

Sr		Values calculated as per experimental observations									Values calculated as per experimental data based model								Values calculated as per ANN simulation							
-	Speed	л ₀₁	π ₀₂	AD3	π ₀₄	AD5	л ₀₆	л ₀₇	π _{D1}	π ₀₂	π ₀₃	π _{D4}	Л ₀₅	π _{D6}	π ₀₇	701	π _{D2}	л ₀₃	π ₀₄	7.05	Л ₀₆	π ₀₇				
1		6.3154	0.245	1.17	0.24	59.895	120	120	6.01809	0.3611	1.1613	0.37325	60.0109	120.166	119.705	6.315	0.2457	1.1007	0.2371	59.894	120.076	119.972				
2	5.23	6.65668	0.61183	2.105	0.549	59.738	119	121	6.40475	0.62494	2.08613	0.51818	59.7189	119.507	120.197	6.6573	0.6126	2.0151	0.5451	59.7375	119.218	120.913				
3	cm/sec	6.80822	1.30586	4.204	0.918	59.442	119	121	6.66898	1.17455	4.16747	0.7937	59.4718	118.832	120.233	6.8084	1.3064	4.0826	0.908	59.4419	119.116	121				
4	(Part I)	6.99313	2.08825	6.292	1.125	59.107	118	122	7.18687	1.74115	6.23507	0.95805	59.1803	118.288	121.102	6.9933	2,0883	6.3094	1.0992	59.1065	118.01	122.009				
5	(1 4 1 1 1	7.20417	2.1206	7.445	1.131	59.093	118	122	7.39292	2.05037	7.38256	1.04049	59.0674	118.069	121.416	7.2052	2.1211	7.4459	1.1196	59.0923	118.003	122.004				
6		7.47033	2.87391	8.592	1.236	58.77	118	122	7.5142	2.34886	8.53154		58.9937	117.906	121.554	7.4742		8.5829	1.207	58.7725	118.003					
7		5.93264	0.46765	1.871	0.438	59.8	120	120	6.27075	0.67942	1.85772	0.58871	59.7B49	121.825	121.886	5.9361	0.4691	1.8478	0.4336	59.7951	120.011	119.999				
B 9	7.17	6.61918	1.25473	2,806	0.898	59.463	119	121	6.66972	1.00013	2,78091	0.72315		121.312			1.2513		0.8722		119.034	120.981				
9	cm/sec	7.03646	1.62515	4,902	1.02	59,305	119	121	6.92387	1.66957	4.86095			120.74	122.655		1.6235	4.9043	1.0018	59.3051	118.991	120.992				
10	(Part II)	7.20364	2,16884	6.754	1.139	59.072	118	122	7.4545	2.29976				120.256	123.603		2.1696	6.7777	1.096		117.994	121.991				
11		7.63478	2.27007	7,46	1.156	59.029	118	122	7.66194	2.54171	7.38077	1.19707	58.9473		123.977	7.6651	2,2639	7.5239	1.1357	59.0275	117.99					
12		7.81963	3.06839	8.821	1.258	58.678	117	123	7.79001	2.98149		1.32015				7.8578		8.8361	1.2445		117.007	123.022				
13		6.38349		1.17	0.672	59.66		121	6.56097	0.54205	1.16032		59.7432			6.3948		1.1586		59.6653	118.977	120.991				
14	10.31	6.98616	1.89226	3.505	1.085	59,191	118	122	7.02349	1.47644	3.4741		59.3403				1.8872	3.4939	1.0667	59.1836	117.972					
14 15 16	cm/sec	7.52561	2.3214	5.829	1.164	59.007	118	122	7.29799	2.36021	5.78342	1.237	59.1346	118.203		7.5243		5.8188		59.0024	118.006	121.99				
16	(Part III)	7.71226	2.48823	6.985	1.189	58.935	118	122	7.84466				58.8933		121.987	7.7401	2.488									
17		8.02771	2,79989	8.592	1.228	58.802	118	122	8.07325		8.52894	1.43386			122.275	8.0609	2.7999	8.666		58.8108		122.001				
18	18	8.74739	3.24134	9.277	1.272	58.613	117	123	8.19937	3.77861	9.21551	1.48471	58.7136	117.489	122.463	8.7137	3.2412	9.4223	1.2629	58.622	117.015	122.994				

5 **CONCLUSION**

Table shows the steering performance parameters computed by experimental observations, experimental data based model and ANN simulation

References

 T. D. Gillespie, "Fundamentals of Vehicle Dynamics", Society of Automotive Engineers. Inc Warrendale, PA – 1992.

-(9)

- [2] Suh and Redcliff, "Kinematics Design of Mechanisms", John Wiley and Sons, New York, 1978.
- [3] M. Modak et all, "Electronic Measurements System for Torsionally Flexible Clutch", Vibro engineering '98', IFToMM Speciality Symposium University of Kanvaus, Lithunta.
- [4] Denavit and Hertenberg, "A Kinematic Notation for Lower Pair Mechanisms Based on Matrices", A.S.M.E. transaction, Journal of Applied Mechanics June 1955, PP 215-221.
- [5] Prof. Dr. Georg Rill, "Vehicle Dynamics", Fachhochschule Regensburg, University of Applied Sciences, Hochschule for Technik Wrtschaft Soziales.
- [6] K. S. Fu, R. C. Gonzalez, C. C. G. Lee, "Robotics: Control Sensing, Vision and Intelligence", Mc Graw Hill Internation Edition, Signapore.